
Fine-grained hardware switching scheme for
power reduction in multiplication

Y. Huang✉, C. Li, M. Li, L. Van der Perre and W. Dehaene
ELECT
This Letter presents a fine-grained hardware switching scheme to
choose from the proper hardware for low power computing. It exploits
the word-length optimisation opportunities for multiplication unit.
With the proposed technique, the gate-level simulation result on
OpenRISC shows 23.7% power reduction for the multiplication unit,
which accounts for 9.5% power reduction for its execution unit.
Introduction: Energy consumption is one of the most critical metrics for
embedded signal processing systems. Traditionally, designers optimise
the fixed-point word-length that provides just-necessary precision to
minimise the power consumption. On the other hand, driven by the
increasing demand for computing reprogrammability, general purpose
computing devices, e.g. DSPs, ASIPs, GPUs, and application pro-
cessors, are becoming more favourable. In these systems, designers
are constrained to perform the arbitrary word-length optimisation,
since processors are typically sacrificed in hardware cost to cater to
the most complex computing cases.

In general purpose processors, single instruction, multiple data
(SIMD) exploits the over-reserved word-length by applying parallelism
in data-path processing. This reduces the number of operations, and
hence decreases energy consumption. However, it requires dedicated
hardware as well as software tuning, to enable those SIMD intrinsic
functions. Soft-SIMD [1], on the other hand, relies purely on software
to exploit the sub-word parallelism. Nevertheless, in this scheme,
guard bits is required to be inserted, which is non-trivial for software
developers, especially for multiplication operations [2].

fe
tc

h

de
co

de

and/Or/Xor

load/store

barrel shifter

execution

serial divider

logic

m
em

/
co

nt
ro

l

w
rit

eb
ac

k

pipeline

flip-flop

add/sub compareALU

multiplier

Fig. 1 Customised Cappuccino mor1kx microarchitecture

valid_i valid_1 valid_2 valid_o

a[31:0]

b[31:0]

mul_o[31:0]
32b * 32b multiplier

a

b

mul_full

b[31:0]

32b * 32b multiplier

mul_a, mul_b both 
less than 8 bits ?

mul0[31:0]

HS_1

HS_3

a[31:0]

32

valid_1
valid_o

8b * 8b multiplier

HS_2
valid_2

mul_a[31:0]

mul_b[31:0]

mul_a[7:0]

mul_b[7:0] mul1[15:0]

mul_o[31:0]

valid_i

mul_full

mul_short

size_detect

Fig. 2 Schematics of multiplier implementations

a Original three-stage multiplier (original)
b HS between 32 bits and 8 bits multiplier

In this Letter, we introduce an alternative low precision computation
unit besides the traditional full precision unit. A hardware word-length
detector is used to switch the hardware units, in a fine-grained
RONICS LETTERS 4th August 2016 Vol. 52
manner, to reduce the computational cost when full-precision compu-
tation is not necessary. The low word-length computations can be
accomplished by the reduced precision unit without performance degra-
dation. Therefore, the activation chance of the full precision unit is radi-
cally reduced and hence the dynamic power consumption decreases
significantly accordingly. As the detection and execution units are
both constructed in hardware, this technique requires no modification
on compiler nor on software.

In the remaining of this Letter, we demonstrate this technique with an
alternative low-precision multiplier. As its power consumption is O(n2)
regarding the word-length n, using low-precision multiplication results
in significant power saving.

Power in multiplication: Without losing generality, we adopt a simple
32-bit OpenRISC processor, called mor1kx (Cappuccino implemen-
tation) [3]. The schematic of the processor is shown in Fig. 1. The
clock frequency is set to 1 GHz. The processor is implemented in
TSMC 28 nm hpm technology. The execution stage is comprised of a
ALU, a Logic computation unit, a Load/Store unit, a serial divider
and a four-cycle multiplier. We adopt clock-gating in the multiplier
unit to avoid the signal toggling in the multiplier when performing
irrelevant instructions (see Fig. 2a).

The area utilisation and power consumption of the multiplier unit for
each instruction are profiled in Table 1. For the 32-bit multiplier, even if
the word-length of multiplicands is much shorter than 32-bit, the power
consumption is comparable with full-precision multiplication. This is
due to the fact that multiplicands are represented in 2’s complement
form. In this form, the most significant bits (MSBs) are filled with
‘1’s or ‘0’s when the number is short, which results in high toggling
rate during positive-to-negative or negative-to-positive transition.
Nevertheless, if proper multipliers are used, e.g. 8-bit multipliers for
8-bit multiplicand, the power consumption can obviously be much
reduced.

Table 1: Multiplier area and power consumption on each instruc-
tions w.r.t. multiplicands size
Multiplier
size
No. 16 p
Cell area
[μmm2]
p. 1374–1
Power during instructions [μW]
NOP
375
4-bit
 8-bit
 16-bit
 32-bit
MUL
 MUL
 MUL
 MUL
4-bit
 109
 12.152
 48.022
 N/A
 N/A
 N/A
8-bit
 289
 16.497
 100.417
 111.18
 N/A
 N/A
16-bit
 1030
 49.511
 234.2
 278.934
 349.657
 N/A
32-bit
 1744
 50.737
 391.350
 451.808
 531.32
 567.924
This provides great opportunity for power optimisation in processors,
as the multiplicands are not always defined at the full size of 32-bit long
integer. Moreover, even if the multiplicands are defined as 32-bit long
integer, the actual value can be very small, e.g. between −128 and
127 (which can be represented by a 8-bit number).

Considering the above fact, we propose to introduce an alternative
lower-cost multiplier to perform the computation when the word-length
of multiplicands is short enough (see Fig. 2b).

A simple size detecting unit (size_detect) is deployed to detect if both
multiplicands are small, by checking if the MSBs (in this example from
8-bit on) is the same (all ‘1’s or ‘0’s). If both multiplicands are short,
mul_short will execute the operation while the mul_full is clock-gated,
and vice versa. This HS scheme ensures that, the signal toggling only
happens in the proper multiplier unit, and the signal toggling in the
other multiplier unit is minimised. The multipliers are divided into
three stages by two sets of pipeline registers. Signals in the first stage
always toggle even if the unit is not enabled, since the logic input of
the first stage are not clock-gated by the size_detect. To minimise the
power cost of the first stage, we retime the multiplier using the syn-
thesise tool (Cadence RTL compiler), to locate the minimum necessary
portion of the multiplier into the first pipeline stage.

The cell area of the HS multiplier is 2053 μmm2, which is 18% higher
than the original multiplier. This is due to the introduction of the short
multiplier and the corresponding MUX circuit. The power consumption
of the original and HS multiplier is compared in Fig. 3. It is broken
down into three parts: mul_full, mul_short, and mul_rest (rest of the
parts in the multilier). During no operations (NOPs), both multipliers
consume less than 40 μW, which mainly attributes to clock gating
cells. For the HS multiplier, if the multiplicand is shorter than 8 bits,



the mul_full unit is clock-gated and the processing is switched to the
low-power mul_short. Therefore, the overall power consumption is sig-
nificantly lower than the original multiplier. This advantage diminishes
when all the multiplicands are greater than 8 bits. In that situation, the
HS multiplier suffers from the power penalty of the size_detect and
the MUX unit.

0

200

400

600

800
mul_full mul_short mul_rest

NOP
MUL

(100% 8-bit)
MUL

(70% 8-bit)
MUL

(30% 8-bit)
MUL

(0% 8-bit)

po
w

er
 c

on
su

m
pt

io
n,

 m
W

or
igi

na
l

HS

or
igi

na
l

HS

or
igi

na
l

HS

or
igi

na
l

HS

or
igi

na
l

HS

Fig. 3 Power consumption of Ori and HS multiplier during NOP and MUL.
The multiplicands are randomly generated to be whether 8-bit or 32-bit, with
accordingly possibility

Algorithm profiling: To measure the power consumption benefits of the
HS multiplier, it is important to track the utilisation frequency of the
multiplication operation (#multiplication/#instructions), and the statisti-
cal chances that both multiplicands are short. These statistics depend
heavily on applied algorithms and the input data. To get a fair result,
coremark 1.0 [4] and 10 other common algorithms are benchmarked.
Cormark focuses on benchmarking CPU cores of embedded systems.
The selected algorithms cover a wide range of typical embedded proces-
sing applications, e.g. fft, filtering, jpeg decoding, cryptography, and
error correction. The input data is set to best represent the typical
usage scenario.

Fig. 4 shows the utilisation frequency of the multiplier. On average,
1% of the instructions is a multiplication. Since each multiplication
takes four cycles, the processor will take around 4% of the cycles for
multiplications.

0

1

2

3
multiplier utilisation frequency

#m
ul

/#
O

P
S

, %

co
re

m
ar

k fft

iir_
de

ci

jpg
_d

ec ae
s

fe
c

int
er

lea
ve

plo
yfi

t

au
to

co
rr cfo pll

Fig. 4 Utilisation frequency of multiplier

The word-length distribution of the multiplicands is illustrated in
Fig. 5. The data is obtained by the cycle-accurate OpenRISC simulator.
The multiplicands are recorded for each multiplication. The figure
shows that if the criterion for short-input is stronger, i.e. # of bits is
larger, the activation chance of the mul_short unit will increase,
which hence leads to lower power. However, the mul_short unit itself
consumes more power with increased short-input word-length due to
the higher area cost. Therefore, designers are suggested to profile the
multiplication size coverage for the typical applications and the power
consumption w.r.t. multiplication size.

0

20

40

60

80

100

2 4 8 16 32
size of multiplier, # bits

multiplication size of different benchmarks

coremark fft iir_deci jpg_dec aes fec
interleave ployfit autocorr cfo pll

9 bits

ch
an

ce
 o

f c
ov

er
ag

e,
 %

Fig. 5 Chance of both multiplicands are short for each benchmarks

On the basis of the benchmarks in Fig. 5, we use a 9-bit multiplier for
the mul_short. With this scheme, the mul_short performs more than
ELECTRONICS LETTERS 4
80% of the multiplication for coremark, jpg_dec, aes, and interleave;
around 40% multiplication for iir_deci, fec, polyfit, and cfo; around
5% for fft and pll. This result shows the HS scheme best fits algorithms
that heavily use short_integer data-types for multiplications. In this
scenario, the size_detect takes the role of the compiler to choose the suit-
able multiplication hardware. Moreover, for algorithms that use only
full-width integer data-type, e.g. iir_deci and polyfit, the HS scheme
still performs around 40% of the multiplications. This is due to the
fact that the varying input data has a very high tendency of falling
into the short-size range, even though they are defined to be very
wide to avoid the overflow in the worst case.

Verification: The mor1kx is synthesised at 1 GHz in TSMC 28 nm, and
is simulated at gate-level with extracted parasitic parameters. The area
and power metrics with original or HS (with 9-bit mul_short)
schemes are shown in Fig. 6. For the processor with HS scheme, The
extra mul_short and size_detect results in 23.0% area overhead for the
multiplier unit, which is equivalent to 11.5% area overhead for the
whole execution unit. The power consumption of the mul_full is
reduced from 31.167 to 12.344 μW, since its execution ratio is much
reduced. This leads to a total of 23.7% power saving for the multiplier
unit and 9.5% power saving for the execution unit.

original HS

execute_rest 1631 1621

mul_rest 359 525

mul_short 0 196

mul_full 1385

a b
1424

0

1000

2000

3000

4000

original HS

execute_rest 224.46 218.72

mul_rest 77.60 65.68

mul_short 0.00 4.92

mul_full 31.17 12.34

0

100

200

300

po
w

er
 c

on
su

m
pt

io
n,

 m
W

ar
ea

, m
m

2

Fig. 6 Metrics for the execution unit with original and HS scheme

a Cell area breakdown
b Power breakdown when running cormark

Conclusion: The HS scheme proposed in this Letter exploits the
word-length opportunities to reduce the dynamic power consumption.
An alternative short multiplier is utilised when the circuit detects the
input is short enough. As a result, power consumption is reduced.

The proposed scheme does not affect the software nor the compiler,
since the detection and switching are implemented at hardware level.
It best fits processors which frequently perform short multiplications.
In such processors, the multiplier unit power can be much reduced.

© The Institution of Engineering and Technology 2016
Submitted: 30 October 2015 E-first: 14 July 2016
doi: 10.1049/el.2015.3828
One or more of the Figures in this Letter are available in colour online.

Y. Huang, C. Li and M. Li (IMEC, Leuven, Belgium)

✉ E-mail: yanxiang.huang@imec.be

L. Van der Perre and W. Dehaene (ESAT Department, KU Leuven,
Belgium)

Y. Huang and C. Li: Also with ESAT Department, KU Leuven, Belgium

References

1 Kraemer, S., Leupers, R., Ascheid, G., and Meyr, H.: ‘SoftSIMD –
exploiting subword parallelism using source code transformations’.
Design, Automation Test in Europe Conf. Exhibition (DATE’07),
2007, pp. 1–6

2 Novo, D., Kritikakou, A., Raghavan, P., der Perre, L., Huisken, J., and
Catthoor, F.: ‘Ultra low energy domain specific instruction-set processor
for on-line surveillance’. IEEE 8th Symp. on Application Specific
Processors (SASP), 2010, pp. 30–35

3 ‘mor1kx – an OpenRISC Processor IP Core’. Available at https://github.
com/openrisc/mor1kx

4 ‘CoreMark, an EEMBC Benchmark. CoreMark scores for embedded and
desktop CPUs’. Available at http://www.eembc.org/coremark/index.php
th August 2016 Vol. 52 No. 16 pp. 1374–1375

mailto:
https://github.com/openrisc/mor1kx
https://github.com/openrisc/mor1kx
https://github.com/openrisc/mor1kx
http://www.eembc.org/coremark/index.php
http://www.eembc.org/coremark/index.php

	Introduction
	Power in multiplication
	Algorithm profiling
	Verification
	Conclusion
	References

